A New Adaptive Boltzmann Selection Schedule SDS
نویسندگان
چکیده
FDA (the Factorized Distribution Algorithm) is an evolutionary algorithm that combines mutation and recombination by using a distribution. The distribution is estimated from a set of selected points. It is then used to generate new points for the next generation. In general a distribution defined forn binary variables has 2n parameters. Therefore it is too expensive to compute. For additively decomposed discrete functions (ADFs) there exists an algorithm that factors the distribution into conditional and marginal distributions, each of which can be computed in polynomial time. Previously, we have shown a convergence theorem for FDA . But it is only valid using Boltzmann selection. Boltzmann selection was not used in practice because a good annealing schedule was lacking. Using a Taylor expansion of the average fitness of the Boltzmann distribution, we have developed an adaptive annealing schedule called SDS (standard deviation schedule) that is introduced in this work. The inverse temperature is changed inversely proportional to the standard deviation.
منابع مشابه
Comparing the adaptive Boltzmann selection schedule SDS to truncation selection
FDA (the Factorized Distribution Algorithm) is an evolutionary algorithm that combines mutation and recombination by using a distribution. The distribution is estimated from a set of selected points. It is then used to generate new points for the next generation. FDA uses a factorization to be able to compute the distribution in polynomial time. Previously, we have shown a convergence theorem f...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملEnhancement of Power System Voltage Stability Using New Centralized Adaptive Load Shedding Method
This paper presents a new centralized adaptive method under frequency load shedding. Sometimes, after initial frequency drop following severe disturbances, although the system frequency returns to its permissible value, however, the system might become unstable due to voltage problems. In this regard, the paper proposes a new centralized adaptive load shedding method to enhance the voltage stab...
متن کاملCongestion estimation of router input ports in Network-on-Chip for efficient virtual allocation
Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...
متن کاملBoosting Genetic Algorithms with (Self-) Adaptive Selection [CEC7297]
In this paper we evaluate a new approach to selection in Genetic Algorithms (GAs). The basis of our approach is that the selection pressure is not a superimposed parameter defined by the user or some Boltzmann mechanism. Rather, it is an aggregated parameter that is determined collectively by the individuals in the population. We implement this idea in two different ways and experimentally eval...
متن کامل